From Skeletons to Supercontinents: How Fluid Dynamics Can Model It All PSS Talk

Christian Jones

October 27, 2022

Overview

• Many materials we encounter have viscoelastic properties.

- Viscosity: measure of resistance to flow.
- Elasticity: ability of a material to return to its original state after removal of deforming forces.
- Characterised by a *relaxation time* quantifies 'memory' of deformation history.

Gibson, A., 1972.

Arnold, J., 1955

Disney, 1929.

Introduction

Polymeric Fluids

- Polymer long chain molecule formed of repeating units/monomers.
- Polymer melt a thermoplastic heated to a temperature above its melting point.
- (Dilute) polymer solution polymer molecules suspended in a solvent.

EI, A., 2022.

Introduction

Properties of Polymeric Fluids

Normal Stress Effects:

Tanner, R. I., 2000

'Variable' Viscosity:

٠t

Variable Viscosity

Shear thinning — shear viscosity η_s should drop with shear rate $\dot{\gamma}$.

Strain hardening — elongational viscosity η_e should increase with elongation rate $\dot{\epsilon}$.

Viscoelastic Modelling

Overview

Q. How can we model these materials? A. Use conservation laws.

1 Mass:

$$\nabla \cdot \mathbf{u} = 0.$$

2 Momentum:

$$\rho\left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u}\cdot\nabla)\mathbf{u}\right) = -\nabla\rho + \nabla\cdot\boldsymbol{T}, \quad \boldsymbol{T}^{T} = \boldsymbol{T}.$$

With this notation, we also have

$$\eta_s = \frac{T_{12}}{\dot{\gamma}}, \quad \eta_e = \frac{T_{11} - T_{22}}{\dot{\epsilon}}.$$

Viscoelastic Modelling Specifying τ

We still need to specify T!

$$\rho\left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\right) = -\nabla \boldsymbol{p} + \nabla \cdot \boldsymbol{T}.$$

T = **0** \longrightarrow inviscid fluids.

•
$$\boldsymbol{T} = \eta \left[\nabla \mathbf{u} + \nabla \mathbf{u}^T \right] := 2\eta \boldsymbol{D} \longrightarrow \text{Newtonian fluids.}$$

•
$$\mathbf{T} = 2\eta(\dot{\gamma})\mathbf{D} \longrightarrow$$
 generalised Newtonian fluids.

None of these really help us... but we can do better!

Viscoelastic Modelling Constitutive Equations

Models fall into four categories:

Continuum:

Dumbbell:

Network:

Reptation:

Hutson, M., 2016.

Maxwell Model Spring-Dashpot Schematics

- Need to capture effects of elasticity and viscosity.
- Initially work in 1D.
- Represent materials schematically.

Build models by combining these elements!

Maxwell Model

Maxwell Material

The simplest construction we can make is

We need to relate the stress T to the strain ϵ .

$$\epsilon = \frac{\text{change in length}}{\text{original length}}.$$

Maxwell Model Maxwell Equation

Components

Spring: $T_S = E\epsilon_S$ (Hooke's Law)Dashpot: $T_D = \eta_0 \frac{\partial \epsilon_D}{\partial t}$ (Newton's Law of Viscosity)

Total

Stress: $T = T_S = T_D$.

Strain: $\epsilon = \epsilon_S + \epsilon_D$.

Maxwell Model Maxwell Equation

Differentiating total strain yields:

$$T + \lambda \frac{\partial T}{\partial t} = \eta_0 \frac{\partial \epsilon}{\partial t},$$

with relaxation time $\lambda = \frac{\eta_0}{E}$.

This is the Maxwell equation!

Maxwell, J. C. 1867.

Maxwell Model Is this any good?

In three dimensions:

$$\boldsymbol{T} + \lambda \frac{\partial \boldsymbol{T}}{\partial t} = 2\eta_0 \boldsymbol{D}.$$

Predictions:

- Viscous and elastic limits!
- Stress relaxation for a step strain $(2\mathbf{D} = \epsilon_0 \delta(t))$,

$$\boldsymbol{T} = \epsilon_0 rac{\eta_0}{\lambda} \mathrm{e}^{-t/\lambda} H(t).$$

- Creep response to step stress is linear.
- Shear no shear thinning $(\eta_s = \eta_0)$.
- Elongation no strain hardening $(\eta_e = 3\eta_0)$.

Further Spring and Dashpot Models

How else can we relate strain (ϵ) and stress (T)?

Captures creep behaviour better at expense of stress relaxation.

Thompson, W. 1878.

Continuum Models

Further Spring and Dashpot Models

How else can we relate strain (ϵ) and stress (T)?

Relaxation time: $\lambda = \frac{\eta_{poly}}{E}$ Zero-shear viscosity: $\eta_0 = \eta_{poly} + \eta_{sol}$ Retardation time: $\lambda_r = \frac{\eta_{sol}\eta_{poly}}{E_{row}}$

Jeffreys, H., 1929.

A Major Problem!

- None of these models hold for large deformations!
- Why? They are not *frame invariant*.
 - Relation between stress and strain needs to be independent of the frame of reference.
- Fix: replace $\frac{\partial}{\partial t}$ with a new time derivative!
- Choose an upper convected derivative:

$$\stackrel{\nabla}{\boldsymbol{S}} := \frac{\partial \boldsymbol{S}}{\partial t} + (\boldsymbol{\mathsf{u}} \cdot \nabla) \boldsymbol{S} - (\nabla \boldsymbol{\mathsf{u}}) \boldsymbol{S} - \boldsymbol{S} (\nabla \boldsymbol{\mathsf{u}})^T.$$

A Major Solution!

New equations!

■ Maxwell → Upper Convected Maxwell (UCM)

$$\boldsymbol{T} + \lambda \ \boldsymbol{T} = 2\eta_0 \boldsymbol{D}.$$

■ Jeffreys' → Oldroyd-B

$$\boldsymbol{T} + \lambda \stackrel{\nabla}{\boldsymbol{T}} = 2\eta_0 (\boldsymbol{D} + \lambda_r \stackrel{\nabla}{\boldsymbol{D}}).$$

Note that setting $\lambda_r = 0$ gives UCM; setting $\lambda_r = \lambda$ gives the Newtonian stress tensor.

Oldroyd, J. G., 1950.

$\mathsf{UCM}/\mathsf{Oldroyd}\text{-}\mathsf{B}$

$$\boldsymbol{T} + \lambda \stackrel{\nabla}{\boldsymbol{T}} = 2\eta_0 (\boldsymbol{D} + \lambda_r \stackrel{\nabla}{\boldsymbol{D}})$$

Predictions:

- Stress relaxation/creep inherited from Maxwell model.
- Shear:

$$\eta_s = \eta_0, \quad T_{11} - T_{22} = 2\eta_0(\lambda - \lambda_r)\dot{\gamma}^2, \quad T_{22} - T_{33} = 0.$$

Extension:

$$\eta_e = \eta_0 \left[\frac{2(1 - \lambda_r \dot{\epsilon})}{1 - 2\lambda \dot{\epsilon}} + \frac{1 + \lambda_r \dot{\epsilon}}{1 + \lambda \dot{\epsilon}} \right]$$

We obtain strain hardening (with a vengeance!)

Going Further

We can improve on this... but the equations become unwieldly!

White-Metzner:

Viscosity and relaxation time shear rate dependent.

Extended White-Metzner:

Viscosity and relaxation time dependent on trace of stress tensor.

Corotational UCM:
 Swap T with a Jaumann time derivative.

What if we considered molecular arguments instead?

White, J. L. and Metzner, A. B., 1960/Souvaliotis, A. and Beris, A. N. 1992/Jaumann, G., 1911

Dumbbell Modelling

- Consider two beads connected via a Hookean spring, immersed in a Newtonian solvent.
- Acting forces: inertia, spring, friction and Brownian.
- Neglect inertia; friction given by Stokes drag

 $6\pi\eta_{sol}a(\dot{\mathbf{r}}_i-\mathbf{u})$

 $m{a} = {
m radius} {
m of bead}, \ \zeta := 6\pi\eta_{sol}m{a}, \ m{R} = {
m end-to-end} {
m vector}.$

Kuhn, W., 1934/Renardy, M., 2000

Dumbbell Modelling Stochastic Equation

Force balance:

$$\begin{aligned} -\zeta \left(\dot{\mathbf{r}_1} - \mathbf{u}(\mathbf{r}_1, t) \right) + H\mathbf{R} + \mathbf{S}_1 &= \mathbf{0}, \\ -\zeta \left(\dot{\mathbf{r}_2} - \mathbf{u}(\mathbf{r}_2, t) \right) - H\mathbf{R} + \mathbf{S}_2 &= \mathbf{0}. \end{aligned}$$

Approximation: since molecules are small,

$$\mathbf{u}(\mathbf{r}_2,t) = \mathbf{u}(\mathbf{r}_1,t) + (\nabla \mathbf{u})(\mathbf{r}_1,t)(\mathbf{r}_2-\mathbf{r}_1).$$

Setting $\mathbf{R} = \mathbf{r}_2 - \mathbf{r}_1$:

$$\dot{\mathbf{R}} =
abla \mathbf{u} \cdot \mathbf{R} - rac{2H}{\zeta} \mathbf{R} + rac{1}{\zeta} (\mathbf{S}_2 - \mathbf{S}_1).$$

Dumbbell Modelling Fokker-Planck Equation

Assumption:

Large number of polymer molecules — distribution of end-to-end vectors **R** given by $\psi(\mathbf{R}, \mathbf{x}, t)$.

• Center of mass
$$\mathbf{x} = \frac{1}{2}(\mathbf{r}_1 + \mathbf{r}_2)$$
.

Result — Fokker-Planck equation!

$$\frac{\partial \psi}{\partial t} + (\mathbf{u} \cdot \nabla_{\mathbf{x}})\psi = \frac{2}{\beta\zeta}\Delta_{\mathbf{R}}\psi + \nabla_{\mathbf{R}} \cdot \left[-\nabla_{\mathbf{x}}\mathbf{u} \cdot \mathbf{R}\psi + \frac{2H}{\zeta}\mathbf{R}\psi\right].$$

We can solve this... but we don't need to!

Dumbbell Modelling

Closure Approximations

$$\frac{\partial \psi}{\partial t} + (\mathbf{u} \cdot \nabla_{\mathbf{x}})\psi = \frac{2}{\beta\zeta}\Delta_{\mathbf{R}}\psi + \nabla_{\mathbf{R}}\cdot \left[-\nabla_{\mathbf{x}}\mathbf{u}\cdot\mathbf{R}\psi + \frac{2H}{\zeta}\mathbf{R}\psi\right] \quad (*)$$

We can show that the polymer contribution to the stress is

$$\boldsymbol{T}_{\boldsymbol{p}} = \int_{\mathbb{R}^3} \boldsymbol{n} \boldsymbol{H} \mathbf{R} \mathbf{R}^{\mathsf{T}} \boldsymbol{\psi} \; \boldsymbol{d} \mathbf{R}.$$

■ Multiplying Fokker-Planck (*) by *nH***R**^{*T*} and integrating gives

.

$$\nabla_{\boldsymbol{\mu}} + \frac{4H}{\zeta} \boldsymbol{T}_{\boldsymbol{\mu}} = \frac{4nH}{\beta\zeta} \boldsymbol{I}.$$

Have we seen this before?

Dumbbell Modelling Déjà Vu?

$$\nabla_{\boldsymbol{p}} + \frac{4H}{\zeta} \boldsymbol{T}_{\boldsymbol{p}} = \frac{4nH}{\beta\zeta} \boldsymbol{I}.$$

• Setting
$$\boldsymbol{T}_{\boldsymbol{p}} = \frac{n}{\beta} \boldsymbol{I} + \tilde{\boldsymbol{T}}_{\boldsymbol{p}}, \ \lambda = \frac{\zeta}{4H} \text{ and } \eta_{\boldsymbol{p}} = \frac{n\zeta}{4\beta H}, \text{ we get}$$

$$\lambda \; \tilde{\boldsymbol{\mathcal{T}}}_{\boldsymbol{\rho}}^{\vee} + \tilde{\boldsymbol{\mathcal{T}}}_{\boldsymbol{\rho}} = 2\eta_{\boldsymbol{\rho}}\boldsymbol{D}.$$

This is the UCM model again!

Total extra stress is

$$\boldsymbol{T} = \tilde{\boldsymbol{T}}_{\boldsymbol{p}} + 2\eta_{\boldsymbol{sol}}\boldsymbol{D},$$

which gives us Oldroyd-B!

Dumbbell Modelling

What do we learn from this?

- 1 UCM/Oldroyd-B aren't stupid choices!
- **2** Can easily obtain an extension \longrightarrow Rouse model.
 - Each 'spring' satisfies its own UCM equation.
 - Applicable to polydisperse solutions.

Rouse, P. E., 1953.

An Advanced Dumbbell Model

- Based on the idea of *direction dependent drag*.
- In absence of solvent ($\eta_{sol} = 0$, $\eta_p = \eta_0$), modify UCM equation as

$$\lambda \, \stackrel{\nabla}{\boldsymbol{T}} + \boldsymbol{M}\boldsymbol{T} = 2\eta_0 \boldsymbol{D}.$$

• Choosing $\boldsymbol{M} = \boldsymbol{I} + \frac{\alpha\lambda}{\eta_0} \boldsymbol{T}$ gives the *Giesekus* model:

$$\lambda \ \overline{\boldsymbol{\mathcal{T}}} + \boldsymbol{\mathcal{T}} + \frac{lpha\lambda}{\eta_0} \, \boldsymbol{\mathcal{T}}^2 = 2\eta_0 \boldsymbol{D}, \quad lpha \in (0,1).$$

This is no longer linear in stress!

Giesekus, H., 1966.

Giesekus Predictions

Shear Viscosity

We actually predict shear thinning!

Giesekus Predictions Shear Normal Stress Coefficients

Positive primary normal stresses; negative secondary normal stresses.

Giesekus Predictions Elongational Viscosity

Strain hardening for $\alpha < 2/3$; strain softening for $\alpha \ge 2/3$.

Giesekus Predictions

In fact...

Constitutive: model		vis	Stea scon	idy netric	Steady	Start/stop in shearing flow	Elongational start/recoil	Single shear step	Double-step shear	Remark
	Small- strain	η	N_{\parallel}	<i>N</i> ₂						
Newtonian, eqn (1.7)	р	М	U	U	М	Р	U	U	U	Infinite stresses in step strains,
Generalized Newtonian, e.g. eqns (4.4, 4.11)	Р	E	U	U	М	Р	U	U	U	Infinite stresses in step strains.
Lodge–Maxwell, (UCM) eqns (4.25, 5.150)	E	М	М	U	Р	М	М	М	М	Useful for illustrative purposes.
Giesekus eqn (5.111)	Е	Е	Е	G-E	G	G	G	М	М	

...Giesekus can have fairly good predictions in many situations!

Tanner, R. I., 2000.

Christian Jones (Bath)

In this presentation, we have

- Discussed the basics of viscoelastic modelling.
- Looked at some mechanical-based continuum models and motivated the UCM model.
- Motivated the UCM model again via molecular theory (so it's certainly not a bad model!)
- Discussed a more complicated model which can make more useful predictions.

PhD aim: Apply asymptotic techniques to study White-Metzner fluids.

$$\stackrel{\nabla}{\pmb{T}} + \lambda_0 \dot{\gamma}^{q-1} \, \pmb{T} = 2\eta_0 \dot{\gamma}^{n-1} \, \pmb{D}, \quad \dot{\gamma} = \sqrt{2 \mathrm{tr}(\pmb{D}^2)}.$$

Thank you for listening!

Happy Halloween!

Ericksen Blog, n.d.

Christian Jones (Bath)

How Fluid Dynamics Can Model It All

October 27, 2022

Dracula:

Dracula A.D. 1972 (1972), Directed by Alan Gibson [Film], London, Hammer Film Productions Ltd.

Spider:

Tarantula! (1955), Directed by Jack Arnold [Film], Universal Pictures

Skeletons:

The Skeleton Dance, 1929, Directed by Walt Disney [Film], Walt Disney Productions $\mbox{Lego:}$

El, A., 2022 '*Halloween Lego Minifigures*' [Online]. Germany Detail Zero. Available from: https://germany.detailzero.com/technology/79249/New-Halloween-minifigures-in-the-LEGO-Build-a-Minifigure-Tower.html

Shear diagram:

Østergård., A. L., 2020. 'Why Shear Rate Matters in Process Control' [Online]. Fluidan. Available from: https://fluidan.com/why-shear-rate-matters-in-process-control/ [Accessed 04-10-22].

Weissenberg Effect/Viscoelastic Table:

R. I. Tanner. Engineering Rheology. 2nd ed. New York, N.Y.: Oxford University Press, 2000.

ZZ Top:

Hutson, M. 2016. 'Billy Gibbons, Frank Beard and Dusty Hill of ZZ Top pose for a group portrait backstage at Glastonbury Festival, United Kingdom, 24th June 2016.'. Redferns. Maxwell:

Maxwell. J. C. "IV. On the dynamical theory of gases". In: Philos. Trans. Royal Soc. 157 (1867), pp. 49–88.

Kelvin Voigt:

Thompson, W. (Lord Kelvin), "Elasticity" in Encyclopaedia Britannica, 9th ed., Vol. VII, Charles Screibner's, New York, (1878) p. 803d,

Jeffreys:

Jeffreys, H., "The Earth: Its Origin, History and Physical Constitution". Cambridge: Cambridge University Press, (1929), p. 265.

Oldroyd:

Oldroyd, J. G., "On the formulation of rheological equations of state". In: Proc. Royal Soc. A. 200.1063 (1950), pp. 523–541.

White-Metzner:

White, J. L. and Metzner, A. B., "Development of constitutive equations for polymeric melts and solutions". In: J. Appl. Polym. Sci. 7 (1963), pp. 1867–1889.

Extended White-Metzner:

A. Souvaliotis and A. N. Beris. "An extended White–Metzner viscoelastic fluid model based on an internal structural parameter". In: Journal of Rheology 36.2 (1992), pp. 241–271.

Jaumann Derivative:

Jaumann, G., Grundlagen der Bewegungslehre. Springer, Leipzig, (1905).

Kuhn:

Kuhn, W., "Shape of fibre-forming molecules in solutions". In: Kolloid Zeitschrift 68 (1934), pp. 2-15.

Renardy:

Renardy, M., Mathematical Analysis of Viscoelastic Flows. Society for Industrial and Applied Mathematics, $2000\,$

Rouse:

Rouse, P.E., "A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers". In: J. Chem. Phys. 21.7 (1953), pp. 1272–1280.

Giesekus:

Giesekus, H., "Die Elastizität von Fl üssigkeiten". In: Rheol. Acta 5.1 (1966), pp. 29–35. Pumpkin:

Ericksen Blog, 'Rick Astley carved into a pumpkin', Available from:

 $https://www.reddit.com/r/rickroll/comments/qetfd6/rickroll_pumpkin/\ [Accessed:\ 25-10-22]$